• Read
  • Publish
  • About


Explore current and past TAD issues and related content.

Current Issue

Learn more about our current issue

Past Issues

Browse our compilation of past issues


Webinars, videos, articles and more


View submission guidelines, learn more about our review process and find helpful recommendations for publishing work in TAD Journal.

Call for Papers

Submit work for our next issue

Author Guide

Explore editorial tips and recommendations


TAD Journal is a peer-­reviewed international journal dedicated to the advancement of scholarship in the field of building technology and its translation, integration, and impact on architecture and design.

Our Mission

Learn more about our vision and values

Editorial Board

Meet the minds bringing our mission to life

Advisory Board

Meet the experts shaping TAD’s future

Issue 7.2

Automatic Generation of Architectural Plans with Machine Learning

The fact that computer software has no intuition about the design process is the main reason not to outsource that entire process to computers, this study aims to use artificial intelligence solutions that automatically produce architectural plans based on machine learning. The research combines quantitative and qualitative data using genetic algorithms, machine learning (k-means clustering), and instance-based neural networks. The results of this study show that, unlike methods based on a combination of genetic algorithms and genetic programming, it is possible to improve the accuracy and speed of map generation by combining three genetic algorithms, machine learning, and a pattern-based graph neural network. Another feature of the proposed method is a nearly 90 percent learning rate in identifying and presenting complete designs. 

Read Full Article (ACSA Member) Read Full Article (Non-member)